Phương Trình Hoá Học

Năng lượng ion hóa là gì?

Năng lượng Ion hóa I là năng lượng cần tiêu tốn để tách một electron ra khỏi nguyên tử ở thể khí không bị kích thích. Năng lượng ion hóa là đại lượng đặc trưng cho khả năng nhường electron của nguyên tử, nghĩa là đặc trưng cho tính kim loại của nguyên tố. I càng nhỏ nguyên tử càng dễ nhường electron, do đó tính kim loại và tính khử của nguyên tố càng mạnh.

Tìm kiếm khái niệm hóa học

Hãy nhập vào khái niệm bất kỳ để bắt đầu tìm kiếm

1. Khái niệm

Năng lượng Ion hóa I là năng lượng cần tiêu tốn để tách một electron ra khỏi nguyên tử ở thể khí không bị kích thích

X (k) + I X+(k) + e

Như vậy, năng lượng năng lượng ion hóa là đại lượng đặc trưng cho khả năng nhường electron của nguyên tử, nghĩa là đặc trưng cho tính kim loại của nguyên tố. I càng nhỏ nguyên tử càng dễ nhường electron, do đó tính kim loại và tính khử của nguyên tố càng mạnh. 

Năng lượng ion hóa thường được biểu diễn bằng kJ/ntg hay eV/nt. Khi biểu diễn bằng eV thì năng lượng ion hóa có trị số bằng thế ion hóa tính theo V

Năng lượng ion hóa được xác định dựa trên các dữ kiện thực nghiệm quang phổ.

Năng lượng ion hóa của nguyên tử phụ thuộc vào điện tích hạt nhân, số lượng tử chính n, tác dụng chắn hạt nhân của các electron bên ngoài. Khi điện tích hạt nhân và khả năng xâm nhập của electron bên ngoài tăng thì năng lượng ion hóa tăng. Ngược lại, khi số lượng tử chính và tác dụng chắn của các lớp electron bên trong tăng thì năng lượng ion hóa lại giảm. Như vậy, năng lượng ion hóa cũng phụ thuộc vào cấu trúc electron nguyên tử.

2. Sự biến đổi năng lượng ion hóa 

Đối với nguyên tử nhiều electron chúng ta sẽ có nhiều giá trị năng lượng ion hóa ứng với quá trình bứt electron thứ nhất (I1), thứ hai (I2), thứ ba (I3).... trong đó I1 < I2 < I3... Vì bây giờ việc bứt electron thứ hai, thứ ba... không phải ra khỏi nguyên tử mà là ra khỏi ion dương có điện tích +1, +2... do đó đòi hỏi phải tiêu tốn năng lượng lớn hơn.

Đặc trưng thay đổi tuần hoàn năng lượng ion hóa của các nguyên tố trong hệ thống tuần hoàn được thể hiện rõ trên đường cong biểu diễn sự phuộc của năng lượng tách electron thứ nhất ra khỏi nguyên tử (I1) vào điện tích hạt nhân nguyên tử của các nguyên tố. Chúng ta thấy, năng lượng ion hóa của các nguyên tố nói chung tăng dần từ đầu đến cuối chu kì, trong đó các nguyên tố s nhóm I có I1 nhỏ nhất, còn các nguyên tố p nhóm VIII có I1 lớn nhất.

Tuy nhiên, trên các đoạn đường cong ứng với sự tăng năng lượng ion hóa nói trên chúng ta thấy có những cực đại và cực tiểu nhỏ. Chẳng hạn đối với các chu kì II, III, IV những cực trị này xuất hiện ở các cặp nguyên tố: Be - B; N - O; Mg - Al; P-S; Zn - Ga, As - Se...

Nguyên tố Na đầu chu kì có I1 nhỏ nhất. Nguyên tố Mg tiếp theo có I1 lớn hơn là do sự tăng điện tích hạt nhân gây nên. Nhưng sự tăng tiếp tục điện tích hạt nhân ở nguyên tố sau Mg và Al không làm tăng I1 của nó. Sỡ dĩ như vậy là vì khi so sánh cấu tạo nguyên tử của các nguyên tố Mg và Al chúng ta thấy 2 electron phân lớp ngoài cùng (3s) của Mg có khả năng xâm nhập vào vùng gần hạt nhân sâu hơn electron phân lớp ngoài cùng 3p của Al nên chúng bị hạt nhân hút mạnh hơn electron này.

Mặt khác, do xâm nhập sâu hơn nên các electron 3s có tác dụng chắn hạt nhân nguyên tử đối với electron 3p. Như vậy, electron 3p của Al vừa ở xa hạt nhân hơn lại vừa bị chắn với hạt nhân mạnh hơn so với các electron 3s của Mg, do đó liên kết với hạt nhân nguyên tử kém bền hơn, đưa đến nguyên tố Al có I1 nhỏ hơn so với nguyên tố Mg. 

Đối với hai nguyên tố tiếp theo Al là Si và P năng lượng ion hóa lại tiếp tục tăng lên. Nguyên nhân của nó cũng là sự tăng điện tích hạt nhân. Nhưng đến đây, khi chuyển sang nguyên tố S tiếp theo năng lượng ion hóa lại giảm xuống. Điều này có thể được giải thích như sau: trong khi cấu trúc bán bão hòa 3p3 của P củng cố thêm độ bền của cấu hình 3s2 thì việc thêm một electron ghép đôi vào orbital 3p trong nguyên tử S lại dẫn đến giảm lực hút của hạt nhân do sự xuất hiện lực đẩy giữa hai electron có spin ngược nhau trên orbital 3p này.

Sau đó năng lượng ion hóa lại tiếp tục tăng lên đối với những nguyên tố còn lại của chu kì và đạt được giá trị cực đại ở nguyên tố cuối chu kì là Ar. Sự tăng I1 ở đây cũng do sự tăng điện tích hạt nhân gây nên. Cấu hình bão hòa s2p6 là cấu hình có tính đối xứng cao nhất và bền nhất, nên trong chu kì III Ar là nguyên tố có năng lượng ion hóa lớn nhất.

Sự thay đổi năng lượng ion hóa trong các phân nhóm chính (s và p) và phụ (d) xảy ra khác nhau. Trong các phân nhóm chính theo chiều tăng điện tích hạt nhân năng lượng ion hóa giảm, ngược lại trong phân nhóm phụ theo chiều này năng lượng ion hóa lại tăng. 

Sự giảm I1 trong các phân nhóm chính là do theo chiều tăng điện tích hạt nhân, số lớp electron tăng lên, đồng thời hiệu ứng chắn của các electron bên trong cũng tăng lên, tất cả điều này đưa đến giảm lực hút giữa hạt nhân và những electron bên ngoài. Còn sự tăng I1 trong phân nhóm phụ được giải thích bằng ưu thế của việc tăng điện tích hạt nhân và hiệu ứng xâm nhập của các electron s lớp ngoài cùng.

 

Tổng số đánh giá:

Xếp hạng: / 5 sao

Các khái niệm hoá học liên quan

Phản ứng oxi hóa - khử trong hóa hữu cơ

Trong Hóa hữu cơ, những phản ứng có sự thay đổi số oxi hóa cũng được gọi là phản ứng oxi hóa - khử, cách tính số oxi hóa cho mỗi nguyên tử cũng tuân theo các quy tắc như đối với các hợp chất vô cơ. Tuy nhiên, vì tiêu điểm của sự chú ý tập trung vào phân tử chất hữu cơ (chứ không phải đồng đều cho cả tác nhân vô cơ) nên để xác định đâu là sự oxi hóa, đâu là sự khử người ta thường xem xét sự thay đổi số oxi hóa ở phân tử hợp chất hữu cơ trước và sau phản ứng.

Xem chi tiết

Phản ứng oxi hóa- khử (Oxid hóa - khử)

Trong phản ứng hóa học, nếu dựa vào số oxi hóa có thể chia phản ứng hóa học thành hai loại: Loại thứ nhất bao gồm những phản ứng hóa học trong đó các nguyên tố ở trong chất phản ứng không biến đổi số oxi hóa. Đó là những phản ứng trao đổi, một số phản ứng phân hủy, kết hợp và tạo phức. Loại thứ hai bao gồm các phản ứng hóa học, trong đó các nguyên tố tham gia vào phản ứng có biến đổi số oxi hóa của chúng. Đó là những phản ứng oxi hóa - khử.

Xem chi tiết

Trạng thái lỏng

Trạng thái lỏng chiếm vị trí trung gian giữa trạng thái khí và trạng thái rắn tinh thể. Lực tương tác giữa các tiểu phân chất lỏng đã lớn đáng kể, tuy nhiên chỉ mới đủ để ngăn cản sự chuyển động hỗn loạn chứ chưa đủ để làm ngừng hẳn sự chuyển động của chúng đối với nhau. Do vậy, chất lỏng giống chất khí ở chỗ không có hình dạng nhất định, có tính khuếch tán và tính chảy nhưng lại giống chất rắn là có thể tích nhất định và nhất là có cấu trúc xác định.

Xem chi tiết

Nhôm oxit

Ôxít nhôm hay nhôm ôxít là một hợp chất hóa học của nhôm và ôxy với công thức hóa học Al2O3. Nó còn được biết đến với tên gọi alumina trong cộng đồng các ngành khai khoáng, gốm sứ, và khoa học vật liệu. Nó có hệ số giãn nở nhiệt 0.063, nhiệt độ nóng chảy cao 2054°C.

Xem chi tiết

Hydrocarbon no

Hydrocarbon no là các Hydrocarbon mà các nguyên tử carbon trong phân tử của nó liên kết với nhau bằng liên kết đơn. Còn những hóa trị còn lại được bão hòa bởi các nguyên tử hydro. Hydrocarbon no bao gồm hai loại: loại thứ nhất là ankan (hay còn gọi là parafin) có công thức tổng quát là CnH2n+2 (n≥1)và loại thứ hai là cycloankan với công thức tổng quát CnH2n (n≥3).

Xem chi tiết
Xem tất cả khái niệm hoá học